Wissenschaftler konzipieren Generator für stabile Quantenbits


Forschung für einen Quantencomputer (Bild: Jeff Fitlow, Rice University)

Forscher der US-Universität Rice haben eine Technik entwickelt, die sich beim Bau eines Quantencomputers eines Tages als nützlich erweisen könnte. Ihren „Quantum Spin Hall Topological Insulator“ (ein topologischer Nichtleiter) bezeichnen sie als wichtigen Baustein, um Quantenteilchen zu schaffen, die Daten speichern und verändern können.

Das Besondere an Quantenbits, kurz Qubits: Anders als normale Bits können sie Null und Eins zugleich anzeigen. Dies würde einem Quantencomputer bei rechenintensiven Aufgaben einen gewaltigen Leistungsvorsprung gegenüber normalen Computern verschaffen – etwa beim Knacken von Codes, der Berechnung von Klimamodellen oder bei biomedizinischen Simulationen.

Ihren Ansatz bezeichnen die Rice-Forscher als besonders robust. „Im Prinzip brauchen wir nicht viele Qubits, um einen leistungsstarken Rechner zu bauen. Rein nach Informationsdichte würde ein Siliziumcomputer mit einer Milliarde Transistoren einem Quantenprozessor mit 30 Qubits entsprechen“, sagt der am Projekt beteiligte Physiker Rui-Rui Du.

Du und sein Kollege Ivan Knez haben ihr Konzept in der Zeitschrift „Physical Review Letters“ veröffentlicht. Darin schreiben sie: „Topologische Konzepte dürften generell fehlertoleranter sein als andere Arten von Quantencomputern, weil jedes Qubit aus einem Paar Quantenteilchen besteht, deren gemeinsame Identität sich so gut wie nicht ändern kann.“ Ein solches Paar wird als Majorana-Fermion bezeichnet – es handelt sich um ein Konzept aus dem Jahr 1937. Das Problem: Bisher ist es nicht gelungen, auch nur ein solches Paar zu schaffen oder zu beobachten.

Knez erwartet, dass ein Majorana-Fermion erscheint, wenn man einen topologischen Nichtleiter mit einem Supraleiter verbindet. Dies muss in der Praxis aber erst erprobt werden. Den Nichtleiter fertigen die Wissenschaftler aus Halbleitern, die für Nachtsichtgeräte verwendet werden. Du zufolge handelt es sich um den ersten topologischen Nichtleiter aus einem Material, von dem bekannt ist, wie man es mit einem Supraleiter verbinden kann.

„Wir sind für den nächsten Schritt gut positioniert“, sagte Du. „Inzwischen können wir nur versuchen, Majorana-Fermionen in Experimenten zu finden und zu prüfen, ob sie gute Kandidaten für stabile Qubits sind.“

ZDNet.de Redaktion

Recent Posts

Studie: Ein Drittel aller E-Mails an Unternehmen sind unerwünscht

Der Cybersecurity Report von Hornetsecurity stuft 2,3 Prozent der Inhalte gar als bösartig ein. Die…

2 Tagen ago

HubPhish: Phishing-Kampagne zielt auf europäische Unternehmen

Die Hintermänner haben es auf Zugangsdaten zu Microsoft Azure abgesehen. Die Kampagne ist bis mindestens…

3 Tagen ago

1. Januar 2025: Umstieg auf E-Rechnung im B2B-Geschäftsverkehr

Cloud-Plattform für elektronische Beschaffungsprozesse mit automatisierter Abwicklung elektronischer Rechnungen.

3 Tagen ago

Google schließt schwerwiegende Sicherheitslücken in Chrome 131

Mindestens eine Schwachstelle erlaubt eine Remotecodeausführung. Dem Entdecker zahlt Google eine besonders hohe Belohnung von…

3 Tagen ago

Erreichbarkeit im Weihnachtsurlaub weiterhin hoch

Nur rund die Hälfte schaltet während der Feiertage komplett vom Job ab. Die anderen sind…

3 Tagen ago

Hacker missbrauchen Google Calendar zum Angriff auf Postfächer

Security-Experten von Check Point sind einer neuen Angriffsart auf die Spur gekommen, die E-Mail-Schutzmaßnahmen umgehen…

5 Tagen ago