Categories: ForschungInnovation

IBM erzielt bedeutenden Fortschritt beim Quantencomputing

Wissenschaftler des IBM Thomas J. Watson Research Centers haben bei der Erforschung praxistauglicher Quantencomputer einen Meilenstein erreicht. Ihnen gelang es, einen Schaltkreis aus vier in einem quadratischen Gitter angeordneten Quantenbits zu entwickelt. Dieser entspricht der kleinsten vollständigen Einheit eines skalierbaren Quantencomputers mit Quantenfehlerkorrektur, wie die Forscher in der aktuellen Ausgabe von Nature Communications erklären.

IBM-Forscher haben vier supraleitende Qubits auf einem rund 1 cm² großen Chip in einem quadratischen Gitter verbunden (Bild: IBM).IBM-Forscher haben vier supraleitende Qubits auf einem rund 1 cm² großen Chip in einem quadratischen Gitter verbunden (Bild: IBM).Auf diese Weise lassen sich erstmals beide Arten von Quantenfehlern (Bit-flip- und Phase-flip-Fehler), die in Quantencomputern auftreten können, erkennen und messen. Eine sogenannte Dekohärenz kann durch Wärme, elektromagnetische Strahlung oder Störstellen im Material verursacht werden und führt zu Rechenfehlern. Bisher war es lediglich möglich, immer nur eine der beiden Fehlerarten zu bestimmen, nicht aber beide gleichzeitig. Dies ist jedoch unabdingbar, um die Fehler zumindest kontrollieren oder sogar korrigieren zu können. Andernfalls ist laut IBM der Bau eines funktionsfähigen Quantencomputers undenkbar.

Im Gegensatz zu einem Bit, das entweder den Zustand 1 oder 0 hat, kann ein Quantenbit auch beide Zustände gleichzeitig annehmen. Dies wird als Superposition oder als 0+1 bezeichnet. Da beide Zustände 0 und 1 Phasenbeziehung miteinander haben, ist das Vorzeichen dieser sogenannten Superposition wichtig. Allerdings können im Superpositionszustand ein Bit-flip-Fehler, bei dem 0 und 1 vertauscht werden, sowie ein Phase-flip-Fehler auftreten, bei dem das Vorzeichen umgewandelt wird.

Da alle aktuellen Quantenbit-Technologien durch Wechselwirkung mit Materie und elektromagnetischer Strahlung ihre Information verlieren, versuchen Forscher Informationen länger zu erhalten, indem sie diese über viele Qubits verteilen. Lassen sich die Wechselwirkungen zwischen direkt benachbarten physischen Qubits kontrollieren, lässt sich auch ein logisches Qubit kodieren. Es wird dadurch ausreichend stabil, um fehlerfreie Operationen durchzuführen.

Vor etwa drei Jahren haben es ebenfalls IBM-Forscher geschafft, mit einem „dreidimensionalen“ supraleitenden Qubit (3D Qubit) die Quantenzustände der Qubits bis zu 100 Mikrosekunden zu erhalten. Das entsprach einer zwei- bis vierfachen Verbesserung gegenüber vorherigen Rekorden. Voraussetzung waren Temperaturen dicht über dem absoluten Nullpunkt. Damit hatten die Wissenschaftler die Voraussetzungen geschaffen, um wirksame Fehlerkorrektursysteme einzusetzen – die sie nun entwickelten.

Dazu haben die IBM-Forscher vier supraleitende Quantenbits auf einem rund einen Quadratzentimeter großen Chip in einem quadratischen Gitter verbunden. Die Anordnung in einem Viereck ist wichtig – hintereinander liegende Qubits verhinderten bisher nämlich die gleichzeitige Erkennung beider möglicher Fehlerarten. Außerdem bietet sie den Vorteil, dass sich weitere Qubits vergleichsweise einfach anschließen lassen, was den Bau größerer Recheneinheiten ermöglicht.

Diese würden schnell eine derzeit nur schwer vorstellbare Rechenleistung entfalten: Ein Quantencomputer mit lediglich 50 logischen Qubits würde laut IBM jede Kombination aus Superrechnern der gegenwärtigen TOP-500-Liste übertreffen. Die sogenannten logischen Qubits sind durch Quantenfehlerkorrektur frei von Dekohärenz und werden durch mehrere physische Quibits codiert.

Zur Herstellung der Qubits lassen sich Standardverfahren der Silizium-Halbleitertechnologie einsetzen. Bei IBM geht man daher davon aus, dass sich die Quantenfehlerkorrektur auch in einem größeren Gitter aus Qubits demonstrieren lässt, sobald einige supraleitende Qubits verlässlich und in größerer Zahl gefertigt sowie mit niedriger Fehlerrate kontrolliert werden können.

„Quantencomputer haben das Potenzial, die computergestützten Wissenschaften zu transformieren“, sagt Arvind Krishna, Direktor von IBM Research. „Sie werden üblicherweise für die Kryptografie erforscht. Wir sehen jedoch auch ein bedeutendes Einsatzgebiet darin, bisher nicht lösbare Problemstellungen in der Physik oder Quantenchemie zu bearbeiten. Dies könnte etwa der Materialforschung oder Medikamentenentwicklung völlig neue Möglichkeiten eröffnen.“

[mit Material von Peter Marwan, ITespresso.de]

Tipp: Wie gut kennen Sie sich mit der europäischen Technologie-Geschichte aus? Überprüfen Sie Ihr Wissen – mit 15 Fragen auf silicon.de.

ZDNet.de Redaktion

Recent Posts

Hacker streuen über 330 bösartige Apps in Google-Play-Kampagnen

Eine aktuelle Analyse der Bitdefender Labs zeigt, dass es bis jetzt weltweit zu rund 60…

9 Stunden ago

Studie: Anstieg der APT-Angriffe auf Unternehmen

Insgesamt ist jedes vierte Unternehmen im Jahr 2024 das Opfer einer APT-Gruppe. Bei den schwerwiegenden…

15 Stunden ago

Update für Windows 11 löscht versehentlich Microsoft Copilot

Betroffen sind einige Nutzer von Windows 11. Die März-Patches deinstallieren unter Umständen die Copilot-App. Nicht…

1 Tag ago

Entschlüsselungs-Tool für Akira-Ransomware entwickelt

Es funktioniert ausschließlich mit der Linux-Variante von Akira. Das Tool knackt die Verschlüsselung per Brute…

1 Tag ago

Frauen in der IT – vielerorts weiter Fehlanzeige

Laut Bitkom-Umfrage meinen noch immer 39 Prozent der Betriebe, Männer seien für Digitalberufe besser geeignet.

2 Tagen ago

Balkonkraftwerk mit Speicher: Lohnt sich die Investition wirklich?

Ein Balkonkraftwerk mit Speicher ermöglicht es, den Eigenverbrauchsanteil deutlich zu erhöhen und Solarstrom auch dann…

3 Tagen ago