Google-Forscher haben einen Algorithmus konzipiert, der mit „übermenschlicher Genauigkeit“ erraten kann, wo ein Foto aufgenommen wurde. Er nutzt dazu nur die Pixel eines Bildes und nicht etwa die Metadaten, wie die MIT Technology Review berichtet.
Forschungsbericht (PDF). Um es zu trainieren, verwendeten sie eine große Zahl auf Google+ veröffentlichter Bilder, deren EXIF-Metadaten den Aufnahmeort verrieten.
Das System haben seine Erfinder um Computervisionsspezialist Tobias Weyand „PlaNet“ getauft. Sie beschreiben es auch in einemBisherige vergleichbare Algorithmen hätten sich auf Landschaften und Bauten konzentriert, um den Aufnahmeort näherungsweise zu ermitteln, heißt es darin. PlaNet hingegen verwendet eine Vielzahl Merkmale, darunter das Wetter, die Vegetation, Straßenmarkierungen und architektonische Details. Diese Merkmale hatten zuvor menschliche Probanden als wichtigste Hinweise identifiziert.
Im Rahmen der von techconsult im Auftrag von ownCloud und IBM durchgeführten Studie wurde das Filesharing in deutschen Unternehmen ab 500 Mitarbeitern im Kontext organisatorischer, technischer und sicherheitsrelevanter Aspekte untersucht, um gegenwärtige Zustände, Bedürfnisse und Optimierungspotentiale aufzuzeigen. Jetzt herunterladen!
Als Vereinfachung unterteilt PlaNet die Erde in 26.000 Quadrate. Diese sind nicht gleich groß, sondern desto größer, je mehr Bilder aus dieser Gegend vorliegen. China wurde ausgenommen, da es dort kein Street View gibt. Mittels der Website www.geoguessr.com ließen sie PlaNet anschließend gegen Menschen antreten. Die dortige Sammlung umfasst 126 Millionen Aufnahmen. Bei ihrer Ortsbestimmung schlug PlaNet in 28 von 50 Fällen den menschlichen Gegner.
Im Trainingsmodus hatte PlaNet sich mit einer noch weit größeren Bildersammlung beschäftigt: „Für diese Aufgabe trugen wir eine Sammlung aus 29,7 Millionen öffentlichen Fotoalben mit Geotags auf Google+ zusammen, die wir in 23,5 Millionen Trainingsalben mit 490 Millionen Bildern und 6,2 Millionen Test-Alben mit 126 Millionen Bildern aufteilten.“
Von Vorteil war dabei das Albenkonzept, das eine Vereinfachung des Lernprozesses ermöglichte. Die meisten Alben enthalten schließlich eine ganze Reihe an einem Ort gemachter Aufnahmen. Durch einen Vergleich konnte PlaNet ermitteln, was für eine Gegend typisch ist. Gegenüber einem Verfahren auf Basis von immer nur einem Bild konnten die Forscher so nach eigenen Angaben eine 50 Prozent bessere Trefferquote erzielen.
[mit Material von Liam Tung, ZDNet.com]
Tipp: Wie gut kennen Sie Google? Testen Sie Ihr Wissen – mit dem Quiz auf silicon.de.
Ausgeklügelte Phishing-Kampagne verwendet eine weiterentwickelte Version der Rhadamanthys-Stealer-Malware.
Die EU-Kommission kritisiert die Verknüpfung von Facebook und dem hauseigenen Online-Kleinanzeigendienst. Sie sieht darin einen…
Fast zwei Drittel halten jedoch eine Umsetzung aller Vorgaben von NIS 2 bis Jahresende für…
Mit dem Dekryptor von Bitdefender können Opfer von Attacken mit der Shrinklocker-Ransomware Dateien wiederherstellen.
In der Vorweihnachtszeit ist vor allem Malvertising auf dem Vormarsch. Cyberkriminelle locken Nutzer über schädliche…
Dazu trägt unter der Infostealer Lumma-Stealer bei. Hierzulande dominiert der Infostealer Formbook die Malware-Landschaft.