Chip-Hersteller Xilinx stellt die neue Adaptive Compute Acceleration Platform (ACAP) vor. Damit sollen Rechenzentren deutlich leistungsfähiger und energiesparender werden. Dieses neue Konzept erlaubt die Programmierung der Hardware über eine Software. Die Chips können damit auf ganz bestimmte Workloads hin optimiert werden. Ein Server mit einem ACAP biete exponentiell mehr Leistung als eine herkömmliche CPU oder eine GPU, verspricht Xilinx.
Laut Xilinx sollen die neuen CPUs 10 bis 100 Mal mehr Leistung liefern können und auch etwa 10 Mal weniger Strom verbrauchen. Die ersten ACAPs sollen unter dem Code-Namen Everest im 7 Nanometerverfahren hergestellt werden und die entsprechenden Designs sollen noch im Verlauf des Jahres verfügbar werden.
Die ACAPs unterscheiden sich deutlich von den so genannten Field-programmable Gate Arrays (FPGA). Diese integrierten Schaltkreise können nach der Fertigstellung noch programmiert werden.
Ceyoniq beleutet in diesem Whitepaper anhand von sechs Thesen die wichtigsten Aspekte zum Thema und gibt Tipps für eine erfolgreiche Migrationsstrategie.
Aber der Chip-Designer muss nicht mehr länger eine programmierbare Logik verwenden, um die Verbindungsinfrastruktur aufzubauen. Vielmehr lassen sich die ACAPs mit Programmiersprachen anpassen, die nicht nur Flexibilität und einfachen Einsatz versprechen, sondern gleichzeitig auch eine Performance ermöglichen, die die einer General Purpose CPU deutlich überlegen sein soll. „Das ermöglich einen fundamental anderen Software-zentrischtischen Design-Flow, weil die gesamte Infrastruktur nativ über Software-programmierbar ist.
Xilinx spricht bei ACAP von einer neuen Generation von FPGA. ACAPs bestehen aus verteilter Memory sowie aus Hardware-programmierbaren DSP-Blocks, einem Multicore SoC (System on Chip) sowie weiteren Software-programmierbaren und dennoch auf Hardware-Ebene anpassbaren Copute-Engines. Sämtliche Module sind über ein Network on Chip, NoC, verbunden. Daneben biete ein ACAP eine hoch integrierte I/O-Funktionalität, die von integrierten Hardware-programmierbaren Speicher-Steuerungen, SerDes-Technologien, Edge RF-ADC/DACs bis hin zu High Bandwith Memory (HBM) reicht. Das sei jedoch von den einzelnen Varianten abhängig.
Software-Entwickler können ACAP-basierte Systeme mit Tools wie C/C++, OpenCL oder Python bearbeiten. Zudem könne ein ACAP auch auf RTL-Level mit bestehenden FPGA-Werkzeugen programmiert werden.
Wie Victor Peng, CEO von Xilinx erklärt, seien bisher sämtliche Produkte von Xilinx in gewisser Weise programmierbar, aber ACAPs seien sowohl Software- wie auch Hardware-programmierbar. Daher könnten Designer den gleichen Chip mehrmals beliebig oft für ein breites Spektrum von Anwendungen programmiert werden.
Xilinx will mit dieser neuen Plattform Betreiber von Rechenzentren ansprechen. Aber auch Unternehmen aus den Branchen Automotive, Luft- und Raumfahrt und Verteidigung und Kommunikatioinsunternehmen könnten von den neuen Prozessoren profitieren. Auch künstliche Intelligenz und das Internet der Dinge könnten von diesen neuen Chips profitieren.
Tipp: Wie gut kennen Sie sich mit Prozessoren aus? Überprüfen Sie Ihr Wissen – mit dem Quiz auf silicon.de.
Wie ECM-Systeme CAD-Prozesse verbessern können, was eine gute ECM-Lösung beim Planmanagement auszeichnet und warum sich nscale CAD als spezialisierte Lösung für das Planmanagement anbietet, erklärt dieses Whitepaper.
Die Entwickler arbeiten noch an weiteren „Verfeinerungen“. Windows Insider erhalten nun wohl eine erste Vorschau…
Laut Bitkom-Umfrage werden in jedem dritten Unternehmen in Deutschland private KI-Zugänge genutzt. Tendenz steigend.
2023 erlitten neun von zehn Unternehmen in der DACH-Region Umsatzverluste und Kurseinbrüche in Folge von…
Der Report „Pacific Rim“ von Sophos beschreibt Katz-und-Maus-Spiel aus Angriffs- und Verteidigungsoperationen mit staatlich unterstützten…
NVIDIA DGX SuperPOD soll voraussichtlich Mitte 2025 in Betrieb genommen und für Forschungsberechnungen genutzt werden.
Latrodectus, auch bekannt als BlackWidow, ist auch unter dem Namen LUNAR SPIDER bekannt.