Data-Mining: Verborgene Schätze in Unternehmensdaten

Trotz aller Vorteile birgt die Implementierung von Data-Mining auch ein nicht zu vernachlässigendes Risiko. Dieses Risiko liegt nicht so sehr in den Lösungen selbst, sondern in der Tatsache, dass der richtige Einsatz der Technologie ein Gebot ohne Alternative ist. Befinden sich nicht sämtliche Daten am richtigen Ort (und auch in der richtigen Reihenfolge), wird selbst der intelligenteste Data-Mining-Algorithmus Fehlinformationen hervorbringen, welche die resultierenden Erkenntnisse verfälschen.

Führen Probleme bei der Dateneingabe beispielsweise dazu, dass die Nachnamen eines Kunden falsch oder auf mehrere Weisen geschrieben sind, wird jede Analyse der Kundendaten diesen Kunden als einen anderen Menschen mit jeweils anderen Kaufgewohnheiten behandeln. Desmond McGillevray kauft dann vielleicht gern Pringles-Kartoffelchips in dem Geschäft in Hurstville, während Desmond MacGillevray jede Menge Zahnpasta in Kogarah einkauft und Desmond McGillevry wiederum öfters Doritos in Rockdale kauft.

Natürlich wird man nicht bei jedem Lebensmitteleinkauf den Namen des Kunden notieren, aber dies ist nur ein praktisches Beispiel. Der Punkt ist der gleiche: Gibt man diese Daten in ein Data-Mining-System ein, wird dieses etwas anderes ausgeben, als wenn man ein Langzeitprofil der allgemeinen Kaufgewohnheiten von Desmond MacGillevry erstellt hätte. Überträgt man diese Art von Problem auf Hunderttausende von Kunden, kann man leicht erkennen, warum viele Unternehmen Data-Mining nicht als ein eigenständiges Projekt, sondern eher als ein Ziel betrachtet haben, das nach sorgfältiger Pflege und Verbesserung der Daten erreicht werden sollte.

Die Fähigkeit, diese Einkäufe zueinander in Verbindung zu setzen, ist Grund genug, ein Treueprogramm einzuführen, bei dem jeder Kunde eindeutig identifiziert werden kann. Das verringert wiederum das Risiko von Dateneingabefehlern und zentriert späteren Kundendienst und Marketing um einen einzigen historischen Eintrag.

Themenseiten: IT-Business, Strategien, Technologien

Fanden Sie diesen Artikel nützlich?
Content Loading ...
Whitepaper

Artikel empfehlen:

Neueste Kommentare 

3 Kommentare zu Data-Mining: Verborgene Schätze in Unternehmensdaten

Kommentar hinzufügen
  • Am 11. Februar 2011 um 19:11 von Frank Xavier

    Open Source Data Mining mit RapidMiner und RapidAnalytics
    Als kostenlose erhältliche Open-Source-Lösungen für den Unternehmenseinsatz empfehle ich:

    * RapidMiner für Desktop oder Notebook: http://www.RapidMiner.com/

    * RapidAnalytics als Server-Lösung: http://www.rapid-i.com/

    Wahlweise kann man in RapidMiner und RapidAnalytics über Erweiterung (Extensions) die Open-Source-Systeme Weka und R einbinden. Es geht aber auch ohne, denn RapidMiner und RapidAnalytics bieten bereits von hause aus sehr viele maschinelle Lernverfahren und statistische Modellierungsverfahren.

  • Am 8. September 2003 um 9:59 von Dieter Gennburg

    Data-Mining mit R
    Die freie Statistikprogrammiersprache R dazu verwenden.

  • Am 25. August 2003 um 20:19 von Ralf Dietrich

    Ausführlich – aber bitte weiteren Aspekt bedenken!
    Vielen Dank für den langen Artikel. Es hat sich gelohnt!
    Ich möchte aber ergänzen, dass Data Mining Modelle (Algorytmen) ein Training für die Datenbasis benötigen, um Vorhersagen treffen zu können. Daraus folgt, das sie mit der Zeit immer besser werden können, wenn man die Voraussagen mit den Ergebnissen konfrontiert.
    Das Training (mit verifizierten Daten) ist wesentlich für die Qualität der Aussagen der Mining Modelle.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *