Threat Intelligence: KI kein Allheilmittel

Künstlicher Intelligenz (KI) kann mit intelligenten Algorithmen helfen, Bedrohungen besser und schneller zu erkennen. Wunderdinge sollte man allerdings nicht erwarten.

Künstliche Intelligenz (KI) hat in den letzten Jahren große Fortschritte gemacht, braucht aber immer noch menschliche Unterstützung. „Mit einer ausreichend großen und qualitativ hochwertigen Datenbasis ausgestattet steuert KI regelbasiertes Wissen und analytische Exaktheit für Threat-Intelligence-Services bei. Trotzdem geht es nicht ohne menschliche Intelligenz. Angesichts des Fachkräftemangels gerade in den Bereichen KI- und Security-Spezialisten sind Unternehmen im Kampf gegen Cyber-Kriminelle auf die Expertise von Security Operation Centers (SOCs) angewiesen“, erklärt Franck Braunstedter, European Practices Director Threat & Validation, Security Operation & Intelligence der NTT Ltd. Security Division.

Im Kampf gegen Cyber-Kriminelle spielen KI-Disziplinen wie Machine Learning, Supervised beziehungsweise Unsupervised Learning, Decision Trees oder Deep Learning eine entscheidene Rolle. KI alleine ist allerdings nicht das Wundermittel in der Abwehr von Hackern und Co., betont NTT Ltd.

Mit Hilfe von KI können in kurzer Zeit große Datenmengen analysiert, unbekannte Dateien mit Threat-Intelligence-Plattformen abgeglichen und so Malware entdeckt und auffällige Verhaltensmuster mit bestehenden Regelkatalogen überprüft werden. Dadurch lassen sich potenzielle Eindringlinge im System ausfindig machen. Das passiert völlig automatisiert, verkürzt in der Folge die Response-Zeit und minimiert mögliche Schäden. Die meisten Unternehmen verfügen zwar über genügend Daten, etwa aus OT (Operational Technology)-Umgebungen oder IoT-Geräten, allerdings nicht über die nötige Menge an reich kodifizierten Trainingsdaten. Ein Security Operations Center (SOC) wie dasjenige von NTT Ltd. nutzt Bedrohungsdaten aus den unterschiedlichsten Quellen und ermöglicht daher tiefgehende Einblicke, die kein Einzelunternehmen mit vertretbarem Aufwand zusammenstellen oder analysieren könnte.

Eine entsprechend große und qualitativ hochwertige Datenbasis wird aber nicht nur für die Erkennung von Anomalien gebraucht, sie ist auch Voraussetzung dafür, dass sich die KI-Systeme kontinuierlich weiterentwickeln. Schlechte Datenqualität führt zu einer schwachen KI, einer unzureichenden Erkennungsrate und letztlich geringer Sicherheit. Wie gut ein KI-Algorithmus dabei ist, hängt ganz entscheidend von den Experten ab, die ihn „trainieren“. Sie müssen ihre maschinellen Helfer mit den nötigen Informationen füttern und Sicherheitsrichtlinien erstellen, die sie basierend auf möglichen Vorfällen oder den Ergebnissen ihrer eigenen Schwachstellensuche weiter verfeinern können. Bei dem sogenannten Supervised Learning „lehrt“ der Analyst dem Algorithmus, welche Schlussfolgerungen er ziehen sollte.

Wirklich schlagkräftig und nebenwirkungsfrei arbeitet KI allerdings nur im Team mit menschlicher Intelligenz. Die Kombination aus kontinuierlich lernenden Algorithmen und gut ausgebildeten Experten ermöglicht es, neue Bedrohungen fast in Echtzeit zu erkennen und darauf zu reagieren. Neben der Beschleunigung der Reaktionszeit ist ein weiterer Vorteil die Genauigkeit in der Erkennung: Anstatt sich in Unmengen von Warnmeldungen zu verzetteln, die sich oft als Fehlalarme erweisen, können Unternehmen ihre Ressourcen auf die Risikominimierung und strategische Maßnahmen konzentrieren. Zwar können KI-Lösungen Informationen in Nanosekunden verarbeiten und wertvolle Vorschläge daraus ableiten, aber nicht jede Information ist wirklich relevant. Die Systeme benötigen daher den Input von den Analysten, um den Kontext eines Sicherheitsvorfalls zu verstehen.

ANZEIGE

Netzwerksicherheit und Netzwerkmonitoring in der neuen Normalität

Die Gigamon Visibility Platform ist der Katalysator für die schnelle und optimierte Bereitstellung des Datenverkehrs für Sicherheitstools, Netzwerkperformance- und Applikationsperformance-Monitoring. Erfahren Sie in diesem Webinar, wie Sie mit Gigamon-Lösungen die Effizienz ihrer Sicherheitsarchitektur steigern und Kosten einsparen können.

Themenseiten: Malware, NTT

Fanden Sie diesen Artikel nützlich?
Content Loading ...
Whitepaper

Artikel empfehlen:

Neueste Kommentare 

Noch keine Kommentare zu Threat Intelligence: KI kein Allheilmittel

Kommentar hinzufügen

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *